Prediction Workshop

Overview of the Benchmark Supercritical Wing (BSCW) Test Case

Presented by:

Rob Scott

Aeroelasticity Branch, NASA Langley Research Center On behalf of the AePW Organizing Committee

- Test Case Selection Rationale
- BSCW Description
 - Geometry and Test Configuration
 - Structural Properties
- BSCW Testing
 - Transonic Dynamics Tunnel (TDT)
 - Oscillating Turntable (OTT)
 - Test Conditions
- BSCW Test Cases and Experimental Data

Overall Workshop Configuration Selection Strategy

- Aeroelastic prediction requires simulation with many independent variables spanning multiple disciplines.
 - Must work to isolate independent variables and evaluate our ability to predict the processes defined by them.
 - Coarse-grain independent variables:
 - Aerodynamics
 - Structural dynamics
 - Fluid / structural coupling
- Focus of 1st workshop: Prediction of unsteady aerodynamic pressures due to forced modal oscillations

Proposed Content of an "Excellent" Data Set

- Configuration that can be modeled without adding an unnecessary level of uncertainty to the analysis
- High-quality model definition
 - Well-documented geometry
 - Stiffness, mass, and inertia measurements
 - Structural dynamic properties:
 - Natural frequencies
 - Mode shapes
 - Generalized masses
- High-quality wind-tunnel measurements
 - Flow regime: subsonic, transonic, and supersonic
 - Extensive array of unsteady pressure measurements
 - Quantitative displacement measurements
 - Quantitative flow visualization measurements
 - Loads measurements
 - Quantitative definition of instability boundaries (LCO, flutter, divergence, buffet, etc.)

AePW-1 Case 2 Selection Rationale: Benchmark Supercritical Wing (BSCW)

- Simple, rectangular wing
- Fixed transition at 7.5% chord
- Structure treated here as rigid
- Applicable test conditions:
 - Subsonic, transonic flow
 - Mixed attached / separated flow
- Time history data available
- Large, well-positioned splitter plate

- Relatively obscure data that serves as a virtually blind test case for the methods
- Known deficiencies:
 - Limited number of pressure transducers in experimental data
 - Transonic Mach number (M = 0.85) is at edge of acceptable range for quality pressure data with splitter plate

- Test Case Selection Rationale
- BSCW Description
 - Geometry and Test Configuration
 - Structural Properties
- BSCW Testing
 - Transonic Dynamics Tunnel (TDT)
 - Oscillating Turntable (OTT)
 - Test Conditions
- BSCW Test Cases and Experimental Data

BSCW Geometry

BSCW Test Configuration

40 In-Situ Unsteady Pressure Transducers:

- 22 upper surface
- 17 lower surface
- 1 leading edge

Cross-section at 60% span, showing the layout of the unsteady pressures.

BSCW Test Configuration (Cont'd)

Splitter Plate:

- 40" from wall
- Boundary layer measured as 8"-14"
- Additional studies and data available on this splitter plate

BSCW Structural Properties

- Designed as a rigid wing on a rigid mounting system.
 - Mounting system oscillates wing in pitch about 30% chord.
- Structural frequencies of installed wing and mounting system:
 - 24.1 Hz spanwise (wing flapping)
 - 27.0 Hz in-plane
 - 79.9 Hz torsion

- Test Case Selection Rationale
- BSCW Description
 - Geometry and Test Configuration
 - Structural Properties
- BSCW Testing
 - Transonic Dynamics Tunnel (TDT)
 - Oscillating Turntable (OTT)
 - Test Conditions
- BSCW Test Cases and Experimental Data

NASA Langley Transonic Dynamics Tunnel (TDT)

- Closed-circuit, continuous-flow wind-tunnel
- Air or R-134a heavy gas test medium
- Mach numbers up to 1.2
- Dynamic pressures up to 550 psf in R-134a
- Model and facility protection systems

TDT Cross-Section

TDT's Oscillating Turntable (OTT)

- Complex flow phenomena associated with transonic flutter and LCO pose challenges to the prediction of unsteady loads and pressures
- Room for improvement of advanced unsteady CFD codes (high reduced frequencies at transonic conditions)
- Experimental data required for code validation and understanding of complex flow phenomena

The OTT satisfies the need for a system to measure unsteady flow phenomena on large wind-tunnel models undergoing precisely controlled pitch motions in the TDT.

BSCW Test Conditions on the OTT

- 1 to 30 Hz oscillations
- M = 0.4 to 0.85
- q = 100, 170, & 200 psf
- $\alpha_{\text{mean}} = -1 \text{ to 5 deg}$
- R-134a & air test mediums

- Test Case Selection Rationale
- BSCW Description
 - Geometry and Test Configuration
 - Structural Properties
- BSCW Testing
 - Transonic Dynamics Tunnel (TDT)
 - Oscillating Turntable (OTT)
 - Test Conditions
- BSCW Test Cases and Experimental Data

BSCW Test Cases

- Target experimental data acquired in R-134a @
 - -M = 0.85
 - q = 200 psf
 - $-Re_c = 4.49$ million
 - $-\alpha = 5.0 \deg$
- This M / α combination was selected due to transient attached and separated flows.
 - Two dynamic cases chosen to demonstrate ability of methods to properly capture frequency effects.
 - Frequencies chosen to minimize potential structural coupling that could occur at the high oscillation frequencies.
- Static data: Mean C_p
- Forced oscillation data:
 - Mean C_p
 - Real and imaginary C_p/θ
 - C_p time histories

BSCW Test Cases

M = 0.85, q = 200 psf, $Re_c = 4.49$ million test medium: R-134a

- a) Steady Case
 - i. $\alpha = 5^{\circ}$
- b) Dynamic Cases

i.
$$\alpha = 5^{\circ}$$
, $\theta = 1^{\circ}$, $f = 1$ Hz

ii.
$$\alpha = 5^{\circ}$$
, $\theta = 1^{\circ}$, $f = 10$ Hz

BSCW Experimental Data

Mean Pressure Coefficient Distribution During Oscillations M = 0.85, q = 200 psf, $Re_c = 4.49$ million, $\alpha_{mean} = 5^{\circ}$, 60% span

- Mean pressure coefficient distributions are identical for each oscillatory frequency.
- At high frequencies, OTT oscillations are consistent, and mean AOA is held.
- Shock on upper surface indicated by the adverse pressure gradient.

BSCW Experimental Data

Unsteady Pressure Coefficient Magnitudes

M = 0.85 q = 200 psf $Re_c = 4.49 \text{ million}$ $\alpha_{mean} = 5^{\circ}$ 60% span

BSCW Test Cases

- a) Steady Case
 - i. $\alpha = 5^{\circ}$
- b) Dynamic Cases
 - i. $\alpha = 5^{\circ}, \theta = 1^{\circ}, f = 1 \text{ Hz}$
 - ii. $\alpha = 5^{\circ}, \theta = 1^{\circ}, f = 10 \text{ Hz}$

